Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 5.376
Filtrar
1.
Methods Mol Biol ; 2788: 39-48, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38656507

RESUMEN

Plant volatile organic compounds (VOCs) are organic chemicals that plants release as part of their natural biological processes. Various plant tissues produce VOCs, including leaves, stems, flowers, and roots. VOCs are essential in plant communication, defense against pests and pathogens, aroma and flavor, and attracting pollinators. The study of plant volatiles has become an increasingly important area of research in recent years, as scientists have recognized these compounds' important roles in plant physiology. As a result, there has been a growing interest in developing methods for collecting and analyzing plant VOCs. HS-SPME-GC-MS (headspace solid-phase microextraction-gas chromatography-mass spectrometry) is commonly used for plant volatile analysis due to its high sensitivity and selectivity. This chapter describes an efficient method for extracting and identifying volatile compounds by HS-SPME coupled with GC-MS in tomato fruits.


Asunto(s)
Frutas , Cromatografía de Gases y Espectrometría de Masas , Solanum lycopersicum , Microextracción en Fase Sólida , Compuestos Orgánicos Volátiles , Solanum lycopersicum/química , Cromatografía de Gases y Espectrometría de Masas/métodos , Compuestos Orgánicos Volátiles/análisis , Compuestos Orgánicos Volátiles/aislamiento & purificación , Microextracción en Fase Sólida/métodos , Frutas/química
2.
Physiol Mol Biol Plants ; 30(2): 289-303, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38623160

RESUMEN

An intrinsic and genetically determined ripening program of tomato fruits often depends upon the appropriate activation of tissue- and stage-specific transcription factors in space and time. The past two decades have yielded considerable progress in detailing these complex transcriptional as well as hormonal regulatory circuits paramount to fleshy fruit ripening. This non-linear ripening process is strongly controlled by the MADS-box and NOR family of proteins, triggering a transcriptional response associated with the progression of fruit ripening. Deepening insights into the connection between MADS-RIN and plant hormones related transcription factors, such as ERFs and ARFs, further conjugates the idea that several signaling units work in parallel to define an output fruit ripening transcriptome. Besides these TFs, the role of other families of transcription factors such as MYB, GLK, WRKY, GRAS and bHLH have also emerged as important ripening regulators. Other regulators such as EIN and EIL proteins also determine the transcriptional landscape of ripening fruits. Despite the abundant knowledge of the complex spectrum of ripening networks in the scientific domain, identifying more ripening effectors would pave the way for a better understanding of fleshy fruit ripening at the molecular level. This review provides an update on the transcriptional regulators of tomato fruit ripening.

3.
Plants (Basel) ; 13(6)2024 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-38592887

RESUMEN

The yield, quality, and water-fertilizer use efficiency of crops are important parameters for assessing rational water and fertilizer management. For an optimal water and fertilizer system with respect to the nutrient solution irrigation of greenhouse tomatoes using cultivation substrates, a two-year greenhouse cultivation experiment was conducted from 2022 to 2023. Three drip fertigation treatments (T1, T2, and T3) were implemented in the experiment, where nutrient solutions were supplied when the substrate's water content reached 60%, 70%, and 80%. The frequency of nutrient solution applications is based on weighing coconut coir strips in the morning and evening at 7:00 to determine the daily water consumption of plants. Nutrient solutions were supplied when the substrate's water content reached the lower limit, and the upper limit for nutrient supply was set at 100% of the substrate water content. The nutrient solution application was carried out multiple times throughout the day, avoiding the midday heat. The nutrient solution formula used was the soilless tomato cultivation formula from South China Agricultural University. The results show that plant height and the leaf area index rapidly increased in the early and middle stages, and later growth tended to stabilize; the daily transpiration of tomatoes increased with an increase in nutrient solution supply, and it was the greatest in the T3 treatment. Between the amount of nutrient solution application and the number of years, the yield increased with the increase of the amount of nutrient solution, showing T3 > T2 > T1. Although the average yield of the T2 treatment was slightly lower than that of the T3 treatment by 3.65%, the average irrigation water use efficiency, water use efficiency, and partial fertilizer productivity of the T2 treatment were significantly higher than those of the T3 treatment by 29.10%, 19.99%, and 28.89%, respectively (p < 0.05). Additionally, soluble solid, vitamin C, and soluble sugar contents and the sugar-acid ratio of tomatoes in the T2 treatment were greater than those in the other two treatments (p < 0.05). Using the TOPSIS (Technique for Order Preference by Similarity to an Ideal Solution) method, it was concluded that the nutrient solution application rate of 70% can significantly increase water and fertilizer use efficiency and markedly improve the nutritional and flavor quality of the fruit without a significant reduction in yield. This finding provides significant guidance for the high-yield, high-quality, and efficient production of coconut coir-based cultivated tomatoes in greenhouses.

4.
Heliyon ; 10(8): e29590, 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38655357

RESUMEN

To return vegetable remnants to soil in situ and understand parameters that determine their decomposition efficiency, the tomato remnant length, soil moisture, soil temperature and dosage of a microbial decomposer (MD) have been evaluated through a laboratory experiment using a nylon mesh bag in this study. The results showed that the residual remnant weight, and total carbon content increased 28.49 % and 32.65 %, respectively with two different remnant lengths (∼0.5 cm and ∼2.5 cm), while the decay rate and organic carbon breakdown rate decreased by 6.14 % and 7.48 %, respectively. When the relative water content in soil increased, the residual remnant weight and total carbon content first decreased and then increased, while the trend of the decay rate (16.94 % with 80 % soil water content) and organic carbon breakdown rate (9.96 % with 60 % soil water content) were opposite. At a high MD dosage (7 % or 9 % of the total compost weight), both rates of remnants were greater than those at the low dosage (1 %), with an increase of 38.63 % or 36.19 % and 15.89 % or 15.78 %, respectively. With an increase in soil temperature, both residual remnant weight and total carbon content decreased first and then increased, while both decomposition rate and organic carbon breakdown rate increased first and then decreased by 27.35 % and 22.78 %, respectively at 45 °C, compared with those at 30 °C. It was concluded that the decomposition rate was significantly correlated with the remnant length and the MD dosage, while the organic carbon breakdown rate was significantly associated with all four parameters evaluated. The optimal decomposing efficiency was achieved through cutting tomato remnants to a length of ∼0.5 cm, maintaining soil relative moisture content at 89 %, keeping soil temperature at 50 °C, and adding 7 % microbial decomposer MD to chopped tomato cuttings.

5.
BMC Genomics ; 25(1): 404, 2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38658857

RESUMEN

Transposable elements (TEs) are a major force in the evolution of plant genomes. Differences in the transposition activities and landscapes of TEs can vary substantially, even in closely related species. Interspecific hybridization, a widely employed technique in tomato breeding, results in the creation of novel combinations of TEs from distinct species. The implications of this process for TE transposition activity have not been studied in modern cultivars. In this study, we used nanopore sequencing of extrachromosomal circular DNA (eccDNA) and identified two highly active Ty1/Copia LTR retrotransposon families of tomato (Solanum lycopersicum), called Salsa and Ketchup. Elements of these families produce thousands of eccDNAs under controlled conditions and epigenetic stress. EccDNA sequence analysis revealed that the major parts of eccDNA produced by Ketchup and Salsa exhibited low similarity to the S. lycopersicum genomic sequence. To trace the origin of these TEs, whole-genome nanopore sequencing and de novo genome assembly were performed. We found that these TEs occurred in a tomato breeding line via interspecific introgression from S. peruvianum. Our findings collectively show that interspecific introgressions can contribute to both genetic and phenotypic diversity not only by introducing novel genetic variants, but also by importing active transposable elements from other species.


Asunto(s)
ADN Circular , Genoma de Planta , Retroelementos , Solanum lycopersicum , Secuencias Repetidas Terminales , Solanum lycopersicum/genética , ADN Circular/genética , Fitomejoramiento , Secuenciación de Nanoporos/métodos , Introgresión Genética , Análisis de Secuencia de ADN/métodos , ADN de Plantas/genética
6.
Data Brief ; 54: 110401, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38646191

RESUMEN

Functional annotation based on Gene Ontology has provided a structured and comprehensive system to access the current knowledge about the function of genes. For model plants such as Arabidopsis thaliana, there is a constant updating and restructuring of the functional annotation that increases the reliability of the analyses that use it. For tomato (Solanum lycopersicum), a crop widely used as a model plant for the study of fleshy fruits, there is no functional annotation, at least not freely accessible, even though its genome has long been sequenced and annotated. In this work, we generated, using a simplified version of the maize GAMER pipeline, a tomato Gene Ontology functional annotation with 72.42% (ITAG3.2) and 74.2% (ITAG4.0) of protein-coding genes with at least one GO term association. With this dataset, we share a reliable and easy-to-use tool with the tomato community.

7.
Cell Mol Biol Lett ; 29(1): 57, 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38649857

RESUMEN

In tomato (Solanum lycopersicum), the ripening of fruit is regulated by the selective expression of ripening-related genes, and this procedure is controlled by transcription factors (TFs). In the various plant-specific TF families, the no apical meristem (NAM), Arabidopsis thaliana activating factor 1/2 (ATAF1/2), and cup-shaped cotyledon 2 (CUC2; NAC) TF family stands out and plays a significant function in plant physiological activities, such as fruit ripening (FR). Despite the numerous genes of NAC found in the tomato genome, limited information is available on the effects of NAC members on FR, and there is also a lack of studies on their target genes. In this research, we focus on SlNAP1, which is a NAC TF that positively influences the FR of tomato. By employing CRISPR/Cas9 technology, compared with the wild type (WT), we generated slnap1 mutants and observed a delay in the ethylene production and color change of fruits. We employed the yeast one-hybrid (Y1H) and dual-luciferase reporter (DLR) assays to confirm that SlNAP1 directly binds to the promoters of two crucial genes involved in gibberellin (GA) degradation, namely SlGA2ox1 and SlGA2ox5, thus activating their expression. Furthermore, through a yeast two-hybrid (Y2H), bimolecular fluorescence complementation (BIFC) and luciferase (LUC) assays, we established an interaction between SlNAP1 and SlGID1. Hence, our findings suggest that SlNAP1 regulates FR positively by activating the GA degradation genes directly. Additionally, the interaction between SlNAP1 and SlGID1 may play a role in SlNAP1-induced FR. Overall, our study provides important insights into the molecular mechanisms through which NAC TFs regulate tomato FR via the GA pathway.


Asunto(s)
Frutas , Regulación de la Expresión Génica de las Plantas , Giberelinas , Proteínas de Plantas , Solanum lycopersicum , Factores de Transcripción , Solanum lycopersicum/genética , Solanum lycopersicum/crecimiento & desarrollo , Solanum lycopersicum/metabolismo , Frutas/genética , Frutas/crecimiento & desarrollo , Frutas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Giberelinas/metabolismo , Regiones Promotoras Genéticas/genética , Etilenos/metabolismo
8.
Insects ; 15(4)2024 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-38667391

RESUMEN

Nesidiocoris tenuis (Hemiptera: Miridae) is a generalist predator commonly used to control the whitefly Bemisia tabaci in Europe. This mirid has been found and established in South Texas, where it was initially observed feeding on nymphs of the psyllid Bactericera cockerelli (Hemiptera: Triozidae) in open tomato fields. B. cockerelli is the vector of the fastidious bacterium "Candidatus Liberibacter solanacearum" that causes diseases in several solanaceous crops, including zebra chip (ZC) disease in potatoes. There is a need to better understand how this predator impacts the control of important crop pests, such as potato psyllids. We assessed the interactions between N. tenuis and B. cockerelli in three different environmental settings. First, we estimated the numeric response of N. tenuis preying on B. cockerelli under laboratory and greenhouse conditions. Second, we evaluated the predator-prey interaction under controlled field cage conditions. Then, we exposed N. tenuis under controlled field release conditions to the natural occurrence of B. cockerelli. Finally, we assessed the compatibility between the use of N. tenuis as a biological control agent in a field study and its impact on ZC disease incidence, severity in potato tubers, and potato yield. Laboratory and greenhouse experiments resulted in diverse types of functional model responses, including exponential and linear mathematical models. Our findings revealed a significant predation effect exerted by N. tenuis, resulting in a reduction of more than fourfold in the number of B. cockerelli nymphs per cage. Specifically, the nymphal population decreased from 21 ± 3.2 in the absence of N. tenuis to 5 ± 1.6 when N. tenuis was present. Furthermore, the combination of N. tenuis with a reduced insecticide program increased potato yields, but only reduced ZC tuber incidence in one of two potato cultivars evaluated, and in one season. Findings from these studies indicate that N. tenuis could be effective as a biological control agent for B. cockerelli in potato production in South Texas. This is the first report of N. tenuis preying on immature stages of any psyllid species.

9.
J Fungi (Basel) ; 10(4)2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38667936

RESUMEN

The biocontrol agent Pythium oligandrum, which is a member of the phylum Oomycota, can control diseases caused by a taxonomically wide range of plant pathogens, including fungi, bacteria, and oomycetes. However, whether P. oligandrum could control diseases caused by plant root-knot nematodes (RKNs) was unknown. We investigated a recently isolated P. oligandrum strain GAQ1, and the P. oligandrum strain CBS530.74, for the control of an RKN Meloidogyne incognita infection of tomato (Solanum lycopersicum L.). Initially, P. oligandrum culture filtrates were found to be lethal to M. incognita second-stage juveniles (J2s) with up to 84% mortality 24 h after treatment compared to 14% in the control group. Consistent with the lethality to M. incognita J2s, tomato roots treated with P. oligandrum culture filtrates reduced their attraction of nematodes, and the number of nematodes penetrating the roots was reduced by up to 78%. In a greenhouse pot trial, the P. oligandrum GAQ1 inoculation of tomato plants significantly reduced the gall number by 58% in plants infected with M. incognita. Notably, the P. oligandrum GAQ1 mycelial treatment significantly increased tomato plant height (by 36%), weight (by 27%), and root weight (by 48%). A transcriptome analysis of tomato seedling roots inoculated with the P. oligandrum GAQ1 strain identified ~2500 differentially expressed genes. The enriched GO terms and annotations in the up-regulated genes suggested a modulation of the plant hormone-signaling and defense-related pathways in response to P. oligandrum. In conclusion, our results support that P. oligandrum GAQ1 can serve as a potential biocontrol agent for M. incognita control in tomato. Multiple mechanisms appear to contribute to the biocontrol effect, including the direct inhibition of M. incognita, the potential priming of tomato plant defenses, and plant growth promotion.

10.
J Virol Methods ; 327: 114924, 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38574773

RESUMEN

Tomato, an extensively cultivated vegetable crop produces miRNAs in response to infection with Groundnut bud necrosis orthotospovirus, a viral pathogen causing significant economic losses. High-throughput miRNA sequencing was performed on tomato leaves inoculated with GBNV and mock-inoculated leaves as controls. Analysis revealed 73 known miRNAs belonging to 24 miRNA families, with variable expression levels. Interestingly, 39 miRNAs were upregulated, and 34 were downregulated in response to GBNV infection. Stem-loop quantitative reverse transcription PCR validated the differential expression of selected miRNAs. Additionally, 30 miRNA encoded proteins were identified to be involved in disease resistance and susceptibility. The miRNA-target interactions were found to play significant roles in cellular and metabolic activities, as well as modulating signaling pathways during the plant-virus interaction. The findings shed light on the intricate regulatory network of miRNAs in tomato response to viral infection and may contribute to developing strategies for improving crop protection against viral diseases.

11.
Plant Sci ; 344: 112091, 2024 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-38615719

RESUMEN

Procedural abscission of outer reproductive organs during flower and fruit development occurs in most plant lineages. Undesired abscission, such as fruitlet shedding causes considerable yield loss in many fruit-producing species. Ethylene is one of the key factors regulating organ abscission. However, the participants involved in the ethylene-mediated abscission pathway remains largely unidentified. In this study, we focused on the ethylene response transcription factors (ERFs) regulating fruitlet abscission in an industrial tree species, A. catechu. A total of 165 ERF genes have been found in the A. catechu genome and eight of these showed distinct expression between the "about-to-abscise" and "non-abscised" samples. An AcERF116 gene with high expression level in the fruit abscission zone (FAZ) was selected for further study. Overexpression of the AcERF116 gene accelerated cell separation in the abscission zone (AZ) and promoted pedicel abscission in transgenic tomato lines. The PG (ploygalacturonase) activity was enhanced in the FAZs of A. catechu fruitlets during ethylene-induced fruitlet abscission, while the PME (pectin methylesterase) activity was suppressed. In addition, cytosolic alkalization was observed in the AZs during abscission in both tomato and A. catechu. Our results suggest that AcERF116 plays a critical role in the crosstalk of ethylene and fruitlet abscission in A. catechu.

12.
Sci Total Environ ; 928: 172259, 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38631646

RESUMEN

The reuse of treated wastewater (TWW) in agriculture for crop irrigation is desirable. Crop responses to irrigation with TWW depend on the characteristics of TWW and on intrinsic and extrinsic soil properties. The aim of this study was to assess the response of tomato (Solanum lycopersicum L.) cultivated in five different soils to irrigation with TWW, compared to tap water (TAP) and an inorganic NPK solution (IFW). In addition, since soil microbiota play many important roles in plant growth, a metataxonomic analysis was performed to reveal the prokaryotic community structures of TAP, TWW and IFW treated soil, respectively. A 56-days pot experiment was carried out. Plant biometric parameters, and chemical, biochemical and microbiological properties of different soils were investigated. Shoot and root dry and fresh weights, as well as plant height, were the highest in plants irrigated with IFW followed by those irrigated with TWW, and finally with TAP water. Plant biometric parameters were positively affected by soil total organic carbon (TOC) and nitrogen (TN). Electrical conductivity was increased by TWW and IFW, being such an increase proportional to clay and TOC. Soil available P was not affected by TWW, whereas mineral N increased following their application. Total microbial biomass, as well as, main microbial groups were positively affected by TOC and TN, and increased according to the following order: IFW > TWW > TAP. However, the fungi-to-bacteria ratio was lowered in soil irrigated with TWW because of its adverse effect on fungi. The germicidal effect of sodium hypochlorite on soil microorganisms was affected by soil pH. Nutrients supplied by TWW are not sufficient to meet the whole nutrients requirement of tomato, thus integration by fertilization is required. Bacteria were more stimulated than fungi by TWW, thus leading to a lower fungi-to-bacteria ratio. Interestingly, IFW and TWW treatment led to an increased abundance of Proteobacteria and Acidobacteria phyla and Balneimonas, Rubrobacter, and Steroidobacter genera. This soil microbiota structure modulation paralleled a general decrement of fungi versus bacteria abundance ratio, the increment of electrical conductivity and nitrogen content of soil and an improvement of tomato growth. Finally, the potential adverse effect of TWW added with sodium chloride on soil microorganisms depends on soil pH.

13.
Environ Pollut ; 349: 123994, 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38636835

RESUMEN

Microplastics (MPs) pollution and their impact on plants have become a global threat, but their effect at the molecular level remains scarce. This study aims to gain insight into the effects of polyvinylchloride microplastic (PVC-MP) on tomato plants at the genetic and protein levels. In this study, we found that increasing concentrations of PVC-MP (2.5, 5,7.5, and 10% w/w) in the soil did not cause any phytotoxic (chlorosis or necrosis) symptoms but it did result in a dose-dependent reduction in plant growth-related parameters, such as height, leaf area, stem diameter, and plant fresh and dry weight. Additionally, the number of secondary roots was reduced while the primary roots were elongated. Furthermore, PVC-MP also caused a significant decrease in light-harvesting pigments chlorophylls, and carotenoids while increasing the level of reactive oxygen species (ROS) and lipid peroxidation in plants. Microscopic analysis of the roots revealed the uptake of PVC-MP of size less than 10 µm. Micro- and macro-element analysis showed changes in concentrations of Ca, Cu, Fe, Mg, Mn, Ni, and Zn, upon PVC-MP exposure. Results from western blotting and q-PCR showed that higher doses of PVC-MP significantly reduced the CO2-fixing enzyme RuBisCO and D1 proteins of PSII at both protein and transcript levels. These findings suggest that lower levels of light-harvesting pigments, D1 protein, RuBisCO, and modulation of nutrient absorption are among the factors responsible for growth suppression in tomato plants upon exposure to PVC-MP. As tomato plants are economically significant crops, an increase in PVC-MP in agricultural fields may have a detrimental influence on crop production, resulting in economic loss.

14.
Microbiol Res ; 283: 127707, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38582011

RESUMEN

Salinity stress badly restricts the growth, yield and quality of vegetable crops. Plant growth-promoting rhizobacteria (PGPR) is a friendly and effective mean to enhance plant growth and salt tolerance. However, information on the regulatory mechanism of PGPR on vegetable crops in response to salt stress is still incomplete. Here, we screened a novel salt-tolerant PGPR strain Pseudomonas aeruginosa HG28-5 by evaluating the tomatoes growth performance, chlorophyll fluorescence index, and relative electrolyte leakage (REL) under normal and salinity conditions. Results showed that HG28-5 colonization improved seedling growth parameters by increasing the plant height (23.7%), stem diameter (14.6%), fresh and dry weight in the shoot (60.3%, 91.1%) and root (70.1%, 92.5%), compared to salt-stressed plants without colonization. Likewise, HG28-5 increased levels of maximum photochemical efficiency of PSII (Fv/Fm) (99.3%), the antioxidant enzyme activities as superoxide dismutase (SOD, 85.5%), peroxidase (POD, 35.2%), catalase (CAT, 20.6%), and reduced the REL (48.2%), MDA content (41.3%) and ROS accumulation in leaves of WT tomatoes under salt stress in comparison with the plants treated with NaCl alone. Importantly, Na+ content of HG28-5 colonized salt-stressed WT plants were decreased by15.5% in the leaves and 26.6% in the roots in the corresponding non-colonized salt-stressed plants, which may be attributed to the higher K+ concentration and SOS1, SOS2, HKT1;2, NHX1 transcript levels in leaves of colonized plants under saline condition. Interestingly, increased abscisic acid (ABA) content and upregulation of ABA pathway genes (ABA synthesis-related genes NCED1, NCED2, NCED4, NECD6 and signal genes ABF4, ABI5, and AREB) were observed in HG28-5 inoculated salt-stressed WT plants. ABA-deficient mutant (not) with NCED1 deficiency abolishes the effect of HG28-5 on alleviating salt stress in tomato, as exhibited by the substantial rise of REL and ROS accumulation and sharp drop of Fv/Fm in the leaves of not mutant plants. Notably, HG28-5 colonization enhances tomatoes fruit yield by 54.9% and 52.4% under normal and saline water irrigation, respectively. Overall, our study shows that HG28-5 colonization can significantly enhance salt tolerance and improved fruit yield by a variety of plant protection mechanism, including reducing oxidative stress, regulating plant growth, Na+/K+ homeostasis and ABA signaling pathways in tomato. The findings not only deepen our understanding of PGPR regulation plant growth and salt tolerance but also allow us to apply HG28-5 as a microbial fertilizer for agricultural production in high-salinity areas.


Asunto(s)
Alphaproteobacteria , Solanum lycopersicum , Pseudomonas aeruginosa/metabolismo , Tolerancia a la Sal , Especies Reactivas de Oxígeno , Homeostasis , Ácido Abscísico/metabolismo , Antioxidantes , Transducción de Señal
15.
Water Sci Technol ; 89(7): 1879-1890, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38619909

RESUMEN

This study investigated the treatment of wastewater from tomato paste (TP) production using electrocoagulation (EC) and electrooxidation (EO). The effectiveness of water recovery from the pretreated water was then investigated using the membrane process. For this purpose, the effects of independent control variables, including electrode type (aluminum, iron, graphite, and stainless steel), current density (25-75 A/m2), and electrolysis time (15-120 min) on chemical oxygen demand (COD) and color removal were investigated. The results showed that 81.0% of COD and 100% of the color removal were achieved by EC at a current density of 75 A/m2, a pH of 6.84 and a reaction time of 120 min aluminum electrodes. In comparison, EO with graphite electrodes achieved 55.6% of COD and 100% of the color removal under similar conditions. The operating cost was calculated to be in the range of $0.56-30.62/m3. Overall, the results indicate that EO with graphite electrodes is a promising pretreatment process for the removal of various organics. In the membrane process, NP030, NP010, and NF90 membranes were used at a volume of 250 mL and 5 bar. A significant COD removal rate of 94% was achieved with the membrane. The combination of EC and the membrane process demonstrated the feasibility of water recovery from TP wastewater.


Asunto(s)
Grafito , Solanum lycopersicum , Contaminantes Químicos del Agua , Aguas Residuales , Eliminación de Residuos Líquidos/métodos , Aluminio , Electrocoagulación/métodos , Agua , Electrodos , Residuos Industriales/análisis
16.
Plant Cell Rep ; 43(4): 113, 2024 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-38573519

RESUMEN

KEY MESSAGE: Selenium nanoparticles reduce cadmium absorption in tomato roots, mitigating heavy metal effects. SeNPs can efficiently help to enhance growth, yield, and biomolecule markers in cadmium-stressed tomato plants. In the present study, the effects of selenium nanoparticles (SeNPs) were investigated on the tomato plants grown in cadmium-contaminated soil. Nanoparticles were synthesized using water extract of Nigella sativa and were characterized for their size and shape. Two application methods (foliar spray and soil drench) with nanoparticle concentrations of 0, 100, and 300 mg/L were used to observe their effects on cadmium-stressed plants. Growth, yield, biochemical, and stress parameters were studied. Results showed that SeNPs positively affected plant growth, mitigating the negative effects of cadmium stress. Shoot length (SL), root length (RL), number of branches (NB), number of leaves per plant (NL), and leaf area (LA) were significantly reduced by cadmium stress but enhanced by 45, 51, 506, 208, and 82%, respectively, by soil drench treatment of SeNPs. Similarly, SeNPs increased the fruit yield (> 100%) and fruit weight (> 100%), and decreased the days to fruit initiation in tomato plants. Pigments were also positively affected by the SeNPs, particularly in foliar treatment. Lycopene content was also enhanced by the addition of NPs (75%). Furthermore, the addition of SeNPs improved the ascorbic acid, protein, phenolic, flavonoid, and proline contents of the tomato plants under cadmium stress, whereas stress enzymes also showed enhanced activities under cadmium stress. It is concluded from the present study that the addition of selenium nanoparticles enhanced the growth and yield of Cd-stressed plants by reducing the absorption of cadmium and increasing the stress management of plants.


Asunto(s)
Nanopartículas , Selenio , Solanum lycopersicum , Selenio/farmacología , Cadmio/toxicidad , Suelo
17.
Front Plant Sci ; 15: 1365490, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38571716

RESUMEN

Arabinogalactan proteins (AGPs) are proteoglycans with an unusual molecular structure characterised by the presence of a protein part and carbohydrate chains. Their specific properties at different stages of the fruit ripening programme make AGPs unique markers of this process. An important function of AGPs is to co-form an amorphous extracellular matrix in the cell wall-plasma membrane continuum; thus, changes in the structure of these molecules can determine the presence and distribution of other components. The aim of the current work was to characterise the molecular structure and localisation of AGPs during the fruit ripening process in transgenic lines with silencing and overexpression of SlP4H3 genes (prolyl 4 hydroxylase 3). The objective was accomplished through comprehensive and comparative in situ and ex situ analyses of AGPs from the fruit of transgenic lines and wild-type plants at specific stages of ripening. The experiment showed that changes in prolyl 4 hydroxylases (P4H3) activity affected the content of AGPs and the progress in their modifications in the ongoing ripening process. The analysis of the transgenic lines confirmed the presence of AGPs with high molecular weights (120-60 kDa) at all the examined stages, but a changed pattern of the molecular features of AGPs was found in the last ripening stages, compared to WT. In addition to the AGP molecular changes, morphological modifications of fruit tissue and alterations in the spatio-temporal pattern of AGP distribution at the subcellular level were detected in the transgenic lines with the progression of the ripening process. The work highlights the impact of AGPs and their alterations on the fruit cell wall and changes in AGPs associated with the progression of the ripening process.

18.
Plant J ; 2024 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-38577750

RESUMEN

Knotted1-like homeodomain (KNOX) proteins are essential in regulating plant organ differentiation. Land plants, including tomato (Solanum lycopersicum), have two classes of the KNOX protein family, namely, class I (KNOX I) and class II KNOX (KNOX II). While tomato KNOX I proteins are known to stimulate chloroplast development in fruit, affecting fruit coloration, the role of KNOX II proteins in this context remains unclear. In this study, we employ CRISPR/Cas9 to generate knockout mutants of the KNOX II member, SlKN5. These mutants display increased leaf complexity, a phenotype commonly associated with reduced KNOX II activity, as well as enhanced accumulation of chloroplasts and chlorophylls in smaller cells within young, unripe fruit. RNA-seq data analyses indicate that SlKN5 suppresses the transcriptions of genes involved in chloroplast biogenesis, chlorophyll biosynthesis, and gibberellin catabolism. Furthermore, protein-protein interaction assays reveal that SlKN5 physically interacts with three transcriptional repressors from the BLH1-clade of BEL1-like homeodomain (BLH) protein family, SlBLH4, SlBLH5, and SlBLH7, with SlBLH7 showing the strongest interaction. CRISPR/Cas9-mediated knockout of these SlBLH genes confirmed their overlapping roles in suppressing chloroplast biogenesis, chlorophyll biosynthesis, and lycopene cyclization. Transient assays further demonstrate that the SlKN5-SlBLH7 interaction enhances binding capacity to regulatory regions of key chloroplast- and chlorophyll-related genes, including SlAPRR2-like1, SlCAB-1C, and SlGUN4. Collectively, our findings elucidate that the KNOX II SlKN5-SlBLH regulatory modules serve to inhibit fruit greening and subsequently promote lycopene accumulation, thereby fine-tuning the color transition from immature green fruit to mature red fruit.

19.
J Food Sci ; 2024 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-38578125

RESUMEN

Tomato leather as a healthy alternative to traditional fruit leathers was formulated. A tray dryer with changing temperature (50, 60, and 70°C) and relative humidity (5%, 10%, and 20%) was used to achieve the best product in terms of color, water distribution, lycopene content, mechanical, and sensorial properties. Color change was the highest at 70°C due to the Maillard reaction. Lycopene content was also the highest at 70°C. Time domain-NMR relaxometry showed that water distribution of all samples was homogeneous and similar to each other. Processing conditions affected mechanical properties significantly. The highest tensile strength was observed at 70°C, possibly due to the denatured proteins. Sensory analysis indicated better flavor development at 70°C, whereas overall acceptability of samples was higher at 50°C. The results of this study showed the main processing parameters of tomato leather with a minimal amount of ingredients, with acceptable mechanical and sensorial properties. PRACTICAL APPLICATION: Tomato leather was produced by using minimal amount of ingredients. Taste of the leather was found acceptable, as a salty snack food. Therefore, this product can be produced economically and it has a high potential to be consumed as an alternative to conventional fruit leathers.

20.
Dev Cell ; 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38579721

RESUMEN

The plant cell wall is a dynamic structure that plays an essential role in development, but the mechanism regulating cell wall formation remains poorly understood. We demonstrate that two transcription factors, SlERF.H5 and SlERF.H7, control cell wall formation and tomato fruit firmness in an additive manner. Knockout of SlERF.H5, SlERF.H7, or both genes decreased cell wall thickness, firmness, and cellulose contents in fruits during early development, especially in double-knockout lines. Overexpressing either gene resulted in thicker cell walls and greater fruit firmness with elevated cellulose levels in fruits but severely dwarf plants with lower gibberellin contents. We further identified that SlERF.H5 and SlERF.H7 activate the cellulose biosynthesis gene SlCESA3 but repress the gibberellin biosynthesis gene GA20ox1. Moreover, we identified a conserved LPL motif in these ERFs responsible for their activities as transcriptional activators and repressors, providing insight into how bifunctional transcription factors modulate distinct developmental processes.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...